Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Sci Rep ; 14(1): 330, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172165

Adverse early life experiences are well-established risk factors for neurological disorders later in life. However, the molecular mechanisms underlying the impact of adverse experiences on neurophysiological systems throughout life remain incompletely understood. Previous studies suggest that social attachment to parents in early development are indispensable for infants to grow into healthy adults. In situations where multiple offspring are born in a single birth in common marmosets, human hand-rearing is employed to ensure the survival of the offspring in captivity. However, hand-reared marmosets often exhibit behavioral abnormalities, including abnormal vocalizations, excessive attachment to the caretaker, and aggressive behavior. In this study, comprehensive transcriptome analyses were conducted on hippocampus tissues, a neuroanatomical region sensitive to social attachment, obtained from human hand-reared (N = 6) and parent-reared male marmosets (N = 5) at distinct developmental stages. Our analyses revealed consistent alterations in a subset of genes, including those related to neurodevelopmental diseases, across different developmental stages, indicating their continuous susceptibility to the effects of early parental deprivation. These findings highlight the dynamic nature of gene expression in response to early life experiences and suggest that the impact of early parental deprivation on gene expression may vary across different stages of development.


Callithrix , Parents , Animals , Adult , Humans , Male , Callithrix/physiology , Family Relations , Brain , Gene Expression
3.
Cell Chem Biol ; 31(4): 792-804.e7, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-37924814

Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.

4.
Endocr J ; 71(3): 245-252, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38143086

11Beta-hydroxysteroid dehydrogenase 1 (11ß-HSD1) is a key enzyme involved in metabolic syndrome. Transcript-specific epigenetic regulation of the gene encoding 11ß-HSD1 (HSD11B1) has been reported. We examined the mRNA level and methylation status of the HSD11B1 promoter region in the adipose tissue of patients with primary aldosteronism (PA). We compared 10 tissue specimens from patients with PA caused by aldosterone-producing adenoma (APA) with 8 adipose tissue specimens from patients with subclinical Cushing's syndrome (SCS) caused by cortisol-producing adenomas, 4 tissue specimens from patients with Cushing's adenoma (Cu), or 7 tissue specimens from patients with non-functioning adrenal adenoma (NFA). PA, SCS, and Cu were diagnosed according to the guideline of the Japan Endocrine Society. The mRNA level of HSD11B1 was quantified using real-time PCR. Isolated DNA was treated with bisulfite and amplified using primers specific to the human HSD11B1 promoter region. The glycohemoglobin level was significantly higher in patients with APA, SCS, or Cu than in those with NFA (p < 0.05). Blood pressure was significantly higher in patients with APA than in those with SCS, Cu, or NFA (p < 0.01). The HSD11B1 mRNA level was significantly increased in the adipose tissues of APA or SCS patients compared with Cu or NFA patients (p < 0.05). The methylation ratio was significantly lower in SCS patients than in APA, Cu, or NFA patients (p < 0.05). HSD11B1 expression is partly controlled by an epigenetic mechanism in human tissues. The pathophysiological role of epigenetic regulation of HSD11B1 expression in adipose tissue requires further study.


Adenoma , Adrenocortical Adenoma , Hyperaldosteronism , Humans , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Epigenesis, Genetic , Adipose Tissue/metabolism , Adrenocortical Adenoma/metabolism , Hyperaldosteronism/genetics , Hyperaldosteronism/metabolism , Adenoma/metabolism , RNA, Messenger/metabolism
5.
Cell Death Dis ; 14(9): 642, 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37773170

Differentiation therapy has been proposed as a promising therapeutic strategy for acute myeloid leukemia (AML); thus, the development of more versatile methodologies that are applicable to a wide range of AML subtypes is desired. Although the FOXOs transcription factor represents a promising drug target for differentiation therapy, the efficacy of FOXO inhibitors is limited in vivo. Here, we show that pharmacological inhibition of a common cis-regulatory element of forkhead box O (FOXO) family members successfully induced cell differentiation in various AML cell lines. Through gene expression profiling and differentiation marker-based CRISPR/Cas9 screening, we identified TRIB1, a complement of the COP1 ubiquitin ligase complex, as a functional FOXO downstream gene maintaining an undifferentiated status. TRIB1 is direct target of FOXO3 and the FOXO-binding cis-regulatory element in the TRIB1 promoter, referred to as the FOXO-responsive element in the TRIB1 promoter (FRE-T), played a critical role in differentiation blockade. Thus, we designed a DNA-binding pharmacological inhibitor of the FOXO-FRE-T interface using pyrrole-imidazole polyamides (PIPs) that specifically bind to FRE-T (FRE-PIPs). The FRE-PIPs conjugated to chlorambucil (FRE-chb) inhibited transcription of TRIB1, causing differentiation in various AML cell lines. FRE-chb suppressed the formation of colonies derived from AML cell lines but not from normal counterparts. Administration of FRE-chb inhibited tumor progression in vivo without remarkable adverse effects. In conclusion, targeting cis-regulatory elements of the FOXO family is a promising therapeutic strategy that induces AML cell differentiation.

6.
J Pharm Sci ; 112(12): 3209-3215, 2023 12.
Article En | MEDLINE | ID: mdl-37611664

In hepatic dysfunction, renal pharmacokinetic adaptation can be observed, although information on the changes in drug exposure and the interorgan regulation of membrane transporters in kidney in liver diseases is limited. This study aimed to clarify the effects of renal exposure to nephrotoxic drugs during cholestasis induced by bile duct ligation (BDL). Among the 11 nephrotoxic drugs examined, the tissue accumulation of imatinib and cisplatin in kidney slices obtained from mice 2 weeks after BDL operation was higher than that in sham-operated mice. The uptake of imatinib in the kidney slices of BDL mice was slightly higher, whereas its efflux from the slices was largely decreased compared to that in sham-operated mice. Proteomic analysis revealed a reduction in renal expression of the efflux transporter multidrug resistance-associated protein 6 (Mrp6/Abcc6) in BDL mice, and both imatinib and cisplatin were identified as Mrp6 substrates. Survival probability after cisplatin administration was reduced in BDL mice. In conclusion, the present study demonstrated that BDL-induced cholestasis leads to the downregulation of the renal basolateral efflux transporter Mrp6, resulting in drug accumulation in renal cells and promoting drug-induced renal injury.


Cholestasis , Liver Diseases , Mice , Animals , Liver/metabolism , Down-Regulation , Imatinib Mesylate , Cisplatin , Proteomics , Cholestasis/metabolism , Bile Ducts/metabolism , Bile Ducts/surgery , Liver Diseases/metabolism , Membrane Transport Proteins/metabolism , Kidney/metabolism , Multidrug Resistance-Associated Proteins/metabolism
7.
Cell Rep ; 42(8): 112882, 2023 08 29.
Article En | MEDLINE | ID: mdl-37552992

Nuclear pore complexes (NPCs) are the central apparatus of nucleocytoplasmic transport. Disease-specific alterations of NPCs contribute to the pathogenesis of many cancers; however, the roles of NPCs in glioblastoma (GBM) are unknown. In this study, we report genomic amplification of NUP107, a component of NPCs, in GBM and show that NUP107 is overexpressed simultaneously with MDM2, a critical E3 ligase that mediates p53 degradation. Depletion of NUP107 inhibits the growth of GBM cell lines through p53 protein stabilization. Mechanistically, NPCs establish a p53 degradation platform via an export pathway coupled with 26S proteasome tethering. NUP107 is the keystone for NPC assembly; the loss of NUP107 affects the integrity of the NPC structure, and thus the proportion of 26S proteasome in the vicinity of nuclear pores significantly decreases. Together, our findings establish roles of NPCs in transport surveillance and provide insights into p53 inactivation in GBM.


Glioblastoma , Nuclear Pore , Humans , Nuclear Pore/metabolism , Active Transport, Cell Nucleus , Nuclear Pore Complex Proteins/metabolism , Glioblastoma/metabolism , Tumor Suppressor Protein p53/metabolism
8.
Thromb Res ; 230: 18-26, 2023 10.
Article En | MEDLINE | ID: mdl-37607435

INTRODUCTION: Hereditary antithrombin (AT) deficiency type I causes venous thrombosis due to decreased levels of AT antigen in the blood. We identified one novel and one known abnormal variant in two unrelated Japanese families with venous thrombosis. In this study, we analyzed the mechanism by which these abnormal variants cause type I AT deficiency. MATERIALS AND METHODS: Wild-type and variant AT expression vectors were constructed and transiently expressed in human embryonic kidney 293 cells, and AT antigen levels and N-glycosylation of cell lysates and culture medium were evaluated by western blot analysis. Subcellular co-localization of AT was also examined using confocal microscopy, and chase experiments with cycloheximide and MG132 were performed to investigate the degradation pathway of AT variants. RESULTS: Genetic analysis identified a novel variant, c.613delC (p.Leu205Trpfs⁎79), and the known variant c.283T>C (p.Tyr95His). These AT variants exhibited significantly reduced extracellular secretion compared with the wild-type; N-glycosylation of the AT protein was normal. Co-localization analysis suggested that the transport of these abnormal AT proteins to the Golgi apparatus was impaired. The c.613delC variant was degraded early by the proteasome, suggesting that the c.283T>C variant is stored in the endoplasmic reticulum (ER). CONCLUSIONS: The AT variants identified here synthesize abnormal AT proteins that exhibit suppressed secretion and impaired transport from the ER to the Golgi apparatus. These results provide clues that could help elucidate the mechanism of type I AT deficiency and facilitate therapy development.


Antithrombin III Deficiency , Venous Thrombosis , Humans , Antithrombins , Antithrombin Proteins , Antithrombin III/genetics , Antithrombin III Deficiency/genetics , Venous Thrombosis/genetics
9.
Cancer Sci ; 114(10): 3946-3956, 2023 Oct.
Article En | MEDLINE | ID: mdl-37545017

Multitargeted receptor tyrosine kinase inhibitors, including vascular endothelial growth factor (VEGF) inhibitors, such as sunitinib, have been used as the primary targeted agents for patients with recurrent or distant metastasis of advanced renal cell carcinoma (RCC). However, endogenous or acquired sunitinib resistance has become a significant therapeutic problem. Therefore, we focused on mechanisms of sunitinib resistance in RCC. First, we undertook RNA sequencing analysis using previously established sunitinib-resistant RCC (SUR-Caki1, SUR-ACHN, and SUR-A498) cells. The results showed increased expression of secretogranin II (SCG2, chromogranin C) in SUR-RCC cells compared to parental cells. The Cancer Genome Atlas database showed that SCG2 expression was increased in RCC compared to normal renal cells. In addition, the survival rate of the SCG2 high-expression group was significantly lower than that of the RCC low-expression group. Thus, we investigated the involvement of SCG2 in sunitinib-resistant RCC. In vitro analysis showed that migratory and invasive abilities were suppressed by SCG2 knockdown SUR cells. As SCG2 was previously reported to be associated with angiogenesis, we undertook a tube formation assay. The results showed that suppression of SCG2 inhibited angiogenesis. Furthermore, coimmunoprecipitation assays revealed a direct interaction between SCG2 and hypoxia-inducible factor 1α (HIF1α). Expression levels of VEGF-A and VEGF-C downstream of HIF1α were found to be decreased in SCG2 knockdown SUR cells. In conclusion, SCG2 could be associated with sunitinib resistance through VEGF regulation in RCC cells. These findings could lead to a better understanding of the VHL/HIF/VEGF pathway and the development of new therapeutic strategies for sunitinib-resistant RCC.

10.
Biochem Biophys Res Commun ; 669: 19-29, 2023 08 20.
Article En | MEDLINE | ID: mdl-37262949

ASH2L (Absent-Small-Homeotic-2-Like protein) is a core subunit of the COMPASS (COMplex of Proteins ASsociated with Set1) complex, the most notable writer of the methylation of histone H3 lysine 4 (H3K4). The COMPASS complex regulates active promoters or enhancers for gene expression, and its dysfunction is associated with aberrant development and disease. Here, we demonstrated that ASH2L mediated the cell invasion and migration activity of triple-negative breast cancer cells through the interaction with the COMPASS components and the target genomic regions. Transcriptome analysis indicated a potential correlation between ASH2L and the genes involved in inflammatory/immune responses. Among them, we found that the intrinsic expression of IL1B (interleukin 1 beta), an essential proinflammatory gene, was directly regulated by ASH2L. These results revealed a novel role of ASH2L on the maintenance of breast cancer malignancy possibly through H3K4 methylation of the target inflammatory/immune responsive genes.


Histones , Triple Negative Breast Neoplasms , Humans , Histones/metabolism , Methylation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Lysine/metabolism , Triple Negative Breast Neoplasms/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Int J Hematol ; 117(4): 523-529, 2023 Apr.
Article En | MEDLINE | ID: mdl-36526880

Hereditary antithrombin (AT) deficiency is an autosomal dominant inherited thrombophilia. In three pedigrees of hereditary type I AT deficiency, we identified novel variants c.126delC (p.Lys43Serfs*7), c.165C > G (p.Tyr55*), and c.546delA (p.Lys182Asnfs*102) in the open reading frame encoding AT in each patient. Each of these aberrant variants leads to premature termination of AT protein synthesis. To investigate whether these abnormal variants are involved in the pathogenesis of type I AT deficiency, we analyzed the function of these variants in HEK293 cells. Results of western blot analysis and immunofluorescence microscopy showed that all abnormal variants were expressed intracellularly, but p.Lys43Serfs*7 and p.Tyr55* protein were aggregated in the cells. These three variants were not detected in the spent culture medium, indicating that these novel variants affect protein secretion. In summary, we suggest that these variants in the AT-encoding gene are translated in the cell, but form abnormal proteins that form aggregates and/or inhibit secretion. These results provide insight into novel mechanisms of type I AT deficiency and potential therapies for the condition.


Antithrombin III Deficiency , Antithrombin III , Thrombophilia , Humans , Antithrombin III/genetics , Antithrombin III/metabolism , Antithrombin III Deficiency/genetics , Codon, Nonsense , HEK293 Cells , Thrombophilia/genetics
13.
Sci Rep ; 12(1): 13136, 2022 07 30.
Article En | MEDLINE | ID: mdl-35907977

Maternal overnutrition affects offspring susceptibility to nonalcoholic steatohepatitis (NASH). Male offspring from high-fat diet (HFD)-fed dams developed a severe form of NASH, leading to highly vascular tumor formation. The cancer/testis antigen HORMA domain containing protein 1 (HORMAD1), one of 146 upregulated differentially expressed genes in fetal livers from HFD-fed dams, was overexpressed with hypoxia-inducible factor 1 alpha (HIF-1alpha) in hepatoblasts and in NASH-based hepatocellular carcinoma (HCC) in offspring from HFD-fed dams at 15 weeks old. Hypoxia substantially increased Hormad1 expression in primary mouse hepatocytes. Despite the presence of three putative hypoxia response elements within the mouse Hormad1 gene, the Hif-1alpha siRNA only slightly decreased hypoxia-induced Hormad1 mRNA expression. In contrast, N-acetylcysteine, but not rotenone, inhibited hypoxia-induced Hormad1 expression, indicating its dependency on nonmitochondrial reactive oxygen species production. Synchrotron-based phase-contrast micro-CT of the fetuses from HFD-fed dams showed significant enlargement of the liver accompanied by a consistent size of the umbilical vein, which may cause hypoxia in the fetal liver. Based on these findings, a maternal HFD induces fetal origins of NASH/HCC via hypoxia, and HORMAD1 is a potential therapeutic target for NASH/HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Fetus/metabolism , Hypoxia , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
14.
PLoS One ; 17(3): e0264572, 2022.
Article En | MEDLINE | ID: mdl-35271602

Female sex hormones are beneficial effects for wound healing. However, till date, whether topical estrogen application can promote cutaneous wound healing in diabetes remains unclear. Therefore, the present study aimed to validate the effect of topical estrogen application on cutaneous wound healing in a type 2 diabetes db/db mice model. In total, 22 db/db female mice with type 2 diabetes and eight C57BL/6J female mice were subjected to two full-thickness wound injuries. The mice were divided into the db/db, db/db + estrogen, db/db + vehicle, and wild type (WT) groups. Wound healing was assessed until day 14. The db/db group had a significantly high wound area ratio (wound area/initial wound area) on days 3-14 and a significantly low re-epithelialization ratio on days 7 and 14. Moreover, their angiogenesis ratio was significantly low on day 7 and high on day 14. In contrast, compared with the db/db group, the db/db + estrogen group had a significantly lower wound area ratio on days 1-14 and angiogenesis ratio on day 14, thereby indicating early withdrawal of new blood vessels, as well as a significantly higher re-epithelialization ratio on days 7 and 14 and Ym1+ M2 macrophage/macrophage ratio on day 7. Moreover, microarray analysis showed that the top 10 upregulated or downregulated genes in the db/db group were reversed by estrogen treatment, particularly on day 14, in comparison with the WT group. Thus, topical estrogen application reduced the wound area, promoted re-epithelialization and angiogenesis, and increased the number of M2 macrophages in mice with type 2 diabetes. Furthermore, it improved the differential regulation of genes in db/db mice. Therefore, such treatment can enhance cutaneous wound healing in female mice with type 2 diabetes.


Diabetes Mellitus, Type 2 , Animals , Diabetes Mellitus, Type 2/drug therapy , Estrogens/pharmacology , Female , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Re-Epithelialization , Wound Healing
16.
Cancer Sci ; 112(9): 3810-3821, 2021 Sep.
Article En | MEDLINE | ID: mdl-34145929

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in patients with non-small-cell lung cancer (NSCLC) harboring EGFR mutations. However, due to acquired resistance to EGFR-TKIs, even patients on third-generation osimertinib have a poor prognosis. Resistance mechanisms are still not fully understood. Here, we demonstrate that the increased expression of MUSASHI-2 (MSI2), an RNA-binding protein, is a novel mechanism for resistance to EGFR-TKIs. We found that after a long-term exposure to gefitinib, the first-generation EGFR-TKI lung cancer cells harboring the EGFR-TKI-sensitive mutations became resistant to both gefitinib and osimertinib. Although other mutations in EGFR were not found, expression levels of Nanog, a stemness core protein, and activities of aldehyde dehydrogenase (ALDH) were increased, suggesting that cancer stem-like properties were increased. Transcriptome analysis revealed that MSI2 was among the stemness-related genes highly upregulated in EGFR-TKI-resistant cells. Knockdown of MSI2 reduced cancer stem-like properties, including the expression levels of Nanog, a core stemness factor. We demonstrated that knockdown of MSI2 restored sensitivity to osimertinib or gefitinib in EGFR-TKI-resistant cells to levels similar to those of parental cells in vitro. An RNA immunoprecipitation (RIP) assay revealed that antibodies against MSI2 were bound to Nanog mRNA, suggesting that MSI2 increases Nanog expression by binding to Nanog mRNA. Moreover, overexpression of MSI2 or Nanog conferred resistance to osimertinib or gefitinib in parental cells. Finally, MSI2 knockdown greatly increased the sensitivity to osimertinib in vivo. Collectively, our findings provide proof of principle that targeting the MSI2-Nanog axis in combination with EGFR-TKIs would effectively prevent the emergence of acquired resistance.


Acrylamides/pharmacology , Adenocarcinoma of Lung/metabolism , Aniline Compounds/pharmacology , Drug Resistance, Neoplasm/drug effects , Gefitinib/pharmacology , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , RNA-Binding Proteins/metabolism , Up-Regulation , A549 Cells , Acrylamides/therapeutic use , Adenocarcinoma of Lung/pathology , Aniline Compounds/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gefitinib/therapeutic use , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Lung Neoplasms/pathology , Mutation , Nanog Homeobox Protein/metabolism , Protein Kinase Inhibitors/therapeutic use , RNA-Binding Proteins/genetics , Transcriptome , Transfection
17.
J Hypertens ; 39(5): 1018-1024, 2021 05 01.
Article En | MEDLINE | ID: mdl-33657579

BACKGROUND: Aldosterone synthase gene, CYP11B2 is regulated by potassium and angiotensin II (Ang II). We have reported that Ang II could change the DNA methylation status around transcription factor-binding sites and a transcription start site (TSS) and activate expression of CYP11B2. Similar to Ang II, small increases in extracellular potassium levels also increase CYP11B2 mRNA levels. METHODS AND RESULTS: Adrenocortical H295R cells were treated with different doses of potassium. Methylation analysis of CYP11B2 promoter region was done by bisulfite sequencing. CYP11B2 mRNA and protein levels, chromatin accessibility, methylation and demethylation activity were estimated. The transcriptional ability of CYP11B2 promoter with or without methylation was assessed. Potassium stimulation caused DNA demethylation around cyclic AMP responsive element binding protein 1 (CREB1) and nuclear receptor subfamily 4 group A (NR4A) family-binding sites and a TSS; demethylation was accompanied by recruitment of CREB1 and NR4A1 and increased chromatin accessibility of the CYP11B2 promoter. DNA methylation activity decreased in the nucleus. DNA demethylation at CpG1 (Ad1), CpG2 (Ad5) and CpG3 were detected within 2 to 4 days after potassium (16 mmol/l) stimulation. The changes reached a maximum level by day 7. DNA at CpG2 (Ad5) and CpG3 was re-methylated to levels that were similar to those of nontreated cells at day 9. Potassium treatment significantly reduced DNA methylation activity at days 7 and 9. DNA demethylation activity was not changed by potassium. CONCLUSION: : Potassium induced reversibly DNA demethylation, which switches the phenotype of CYP11B2 expression from an inactive to an active state.


Cytochrome P-450 CYP11B2 , DNA Methylation , Aldosterone/pharmacology , Cytochrome P-450 CYP11B2/genetics , Cytochrome P-450 CYP11B2/metabolism , Potassium , Promoter Regions, Genetic
19.
Int J Hematol ; 111(1): 51-56, 2020 Jan.
Article En | MEDLINE | ID: mdl-31667683

Congenital factor X (FX) deficiency is a rare bleeding disorder with an incidence of one in one million. The proband, a 2-year-old girl, exhibited easy bruising and a history of umbilical cord bleeding at birth. Prothrombin time (> 40 s) and activated partial thromboplastin time (65.0 s) were prolonged. Marked declines in FX activity (< 1%) and FX antigen levels (5%) were also observed. Genetic analysis of the proband identified two types of single-base substitutions, c.353G>A (p.Gly118Asp) and c.1303G>A (p.Gly435Ser), indicating compound heterozygous congenital FX deficiency. Genetic analysis of family members revealed that her father and older sister (5-year-old) were also heterozygous for p.Gly118Asp, and that her mother was heterozygous for p.Gly435Ser. To improve the bleeding tendency, the proband received regular replacement of 500 units of PPSB-HT, a prothrombin complex concentrate (PCC). Following continued regular replacement of 500 units of PPSB-HT once per week, the proband has exhibited no bleeding tendencies and no new bruises have been observed. There are no previous report of the use of PPSB-HT for regular FX replacement. Regular replacement therapy with PPSB-HT may be an effective method for preventative control of bleeding tendencies in FX deficiency.


Blood Coagulation Factors/therapeutic use , Factor X Deficiency/drug therapy , Factor X Deficiency/genetics , Factor X/genetics , Adult , Child, Preschool , Factor X/metabolism , Factor X Deficiency/enzymology , Factor X Deficiency/pathology , Female , Genetic Testing , Genotype , Hemorrhage/genetics , Heterozygote , Humans , Male , Mutation, Missense , Partial Thromboplastin Time , Pedigree , Phenotype , Prothrombin Time
20.
Diabetes Metab Syndr Obes ; 12: 1473-1492, 2019.
Article En | MEDLINE | ID: mdl-31692556

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome, and its progression is associated with aging-associated impairment in metabolic homeostasis. Recently, energy metabolism in adipose tissue has been the subject of renewed interest, because significant energy expenditure can be induced in cells derived from white adipose tissue progenitors, in addition to brown adipose tissue (BAT). Here we evaluated whether aging-associated change in various adipose tissue depots affects the progression of NAFLD. METHODS: Six-week-old male C57BL/6NCrSlc mice were fed control chow (C) or high-fat diet (60% fat; HF) for 12 or 24 weeks (12w/C, 12w/HF, 24w/C and 24w/HF groups, respectively) or switched from C to HF diet at 18 weeks of age (24w/C/HF group) and fed for a further 24 weeks. Some 24w/HF mice received a subcutaneous transplantation of adipose progenitors (106 cells/mouse) from young donor mice. Basal energy expenditure, glucose tolerance, and liver and adipose tissue histology were then evaluated. In addition, features of senescence and the capacity of adipose progenitors to "brown" were compared in mice of various ages. RESULTS: 12w/HF mice demonstrated compensation in the forms of hypertrophy of interscapular classical BAT and the appearance of subcutaneous beige adipocytes, consistent with improved metabolic homeostasis. In contrast, 24w/HF and 24w/C/HF mice developed obesity, glucose intolerance, and severe NAFLD, with accelerated senescence and loss of adipose progenitors in subcutaneous fat tissues. Recruitment of adipose progenitors ameliorated these findings in 24w/HF mice. CONCLUSION: Impaired metabolic compensation in adipose tissue resulted in the progression of NAFLD, which was associated with aging-related deterioration in adipose progenitors. A new approach targeting adipose tissue progenitors might represent a potential strategy for the prevention of NAFLD.

...